Rational Approximation, III

D. J. NEWMAN

Yeshiva University, New York, New York 10033

AND

A. R. REDDY

Institute for Advanced Study, Princeton, New Jersey 08540

Communicated by Oved Shisha

Received September 19, 1975

DEDICATED TO ATLE SELBERG ON HIS SIXTIETH BIRTHDAY

Let $f(z) = \sum_{k=0}^{\alpha} a_k z^k$ be an entire function. Denote $M(r) = \max_{|z|=r} |f(z)|$; $S_n(z)$ denotes the *n*th partial sum of f(z). As usual, the order ρ $(0 \le \rho \le \infty)$ of f(z) is

$$\limsup_{r\to\infty}\frac{\log\log\,M(r)}{\log\,r}\,.$$

If $0 < \rho < \infty$, then the type τ and the lower type ω $(0 < \omega \leqslant \tau < \infty)$ of f(z) are

$$\frac{\tau}{\omega} = \lim_{r \to \infty} \sup_{\text{inf}} \frac{\log M(r)}{r^{\rho}}.$$

Recently approximation to e^{-x} on $[0, \infty)$ has attracted the attention of several mathematicians. In [3], it has been established that $e^{-|x|}$ can be approximated on $(-\infty, \infty)$ by reciprocals of polynomials of degree n with an error $\leqslant C_1(\log n) \, n^{-1}$, but not better than C_2n^{-1} . Further, we have shown that $e^{-|x|}$ can be approximated on $(-\infty, \infty)$ by rational functions of degree n with an error $\leqslant e^{-C_3(n)^{1/2}}$ but not better than $e^{-C_4(n)^{1/2}}$. In this note we obtain error bounds to $|x|e^{-|x|}$ on $(-\infty, \infty)$ by reciprocals of polynomials of degree n and also by rational functions of degree n. We show here that the minimum error by rational functions of degree n is much smaller than the one obtained by reciprocals of polynomials of degree n. Throughout our work C_1 , C_2 , C_3 ,... denote suitable positive constants, and ϵ , $0 < \epsilon < 1$, is arbitrary.

LEMMAS

LEMMA 1 [5, p. 11]. There exists a sequence of rational functions $Q_n(x)_{n=1}^{V}$ for which, for all $n \ge 5$,

$$|x| = Q_n(x) |_{L_n(-1,1)} = 3e^{-x^{3/2}}.$$

In fact, one can take

$$Q_{n+1}(x) = x \left[\frac{P_n(x)}{P_n(x)} + \frac{P_n(-x)}{P_n(-x)} \right],$$

where

$$P_n(x) = \prod_{i=0}^{n+1} (x_i + \xi^i), \quad \xi = \exp(-1 n^{1/2}).$$

Remark. For every positive A.

$$X \rightarrow AQ_{n+1}(X/A)^{-1}_{L_{n}(A,A,A)} = 3Ae^{-n^{1/2}}.$$

This follows easily from Lemma 1.

LEMMA 2 [6, p. 232]. There is a polynomial $P_n(x)$ (n = 1, 2,...) of degree 2n such that

$$x = (1/P(x))_{\{L_x\}=1,1\}} = \pi^2 2n.$$

Remark 1 [6, p. 234].

$$P_n(x)^{-1} = x$$
 for $x = 1$.

Remark 2. For each $A \rightarrow 0$,

$$\frac{A}{P_n(x/A)} = \frac{A}{I_{n-1-3,3}} = \frac{A\pi^2}{2n}$$

This follows easily from Lemma 2.

LEMMA 3 [8, p. 68]. Let P(x) be a polynomial of degree at most n satisfying $|P(x)| \le M$ on [a, b]. Then outside [a, b],

$$P(x) = M \left[T_u \left(\frac{2x - b}{b} \frac{a}{a} \frac{a}{a} \right) \right].$$

LEMMA 4 [3, p. 22]. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_n = 0$, $a_k = 0$ (k = 1), be an entire function of order ρ $(0 + \rho + 1) \infty$), type τ , and lower type ω

 $(0 < \omega \le \tau < \infty)$. Then there exists a constant C_5 (>0) and a sequence of polynomials $\{P_n(x)\}_{n=1}^{\infty}$ of degree n such that, for n > 1,

$$\left\| \frac{1}{f(|x|)} - \frac{1}{P_n(x)} \right\|_{L_{\infty}(-\infty,x)} \leqslant \frac{C_5(\log n)^{1/\rho}}{n}.$$

LEMMA 5 [3, p. 122]. Let f(z) satisfy the assumptions of Lemma 4. Then there exists a constant C_6 (>0) and a sequence of rational functions $\{r_n(x)\}_{n=1}^{\infty}$ of degree n such that, for any $n \ge 1$,

$$||(1/f(|x|)) - r_n(x)||_{L_{\infty}(-\alpha, \alpha)} \le e^{-C_6 n^{1/2}}.$$

LEMMA 6 [7]. Under the same assumptions, we have for the polynomials $P_n(x) = \sum_{k=0}^n a_k x^k$,

$$\limsup_{n\to\infty} \left\| \frac{1}{f(x)} - \frac{1}{P_n(x)} \right\|_{L_{\sigma}[0,\infty)} t^{1/n} < 1.$$

THEOREMS

Theorem 1. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 > 0$, $a_k \ge 0$ $(k \ge 1)$, be an entire function of order ρ $(0 < \rho < \infty)$, type τ , and lower type ω $(0 < \omega \le \tau < \infty)$. Then there exists a polynomial $P_n^*(x)$ of degree n for which, for all n > 1,

$$\left\| \frac{|x|}{f(|x|)} - \frac{1}{P_n^*(x)} \right\|_{L_{\infty}(-\infty, \infty)} \leqslant \frac{C_9(\log n)^{2/\rho}}{n}. \tag{1.1}$$

Remark. If f(z) is even, then $2/\rho$ in (1.1) can be replaced by $1/\rho$.

Proof. By Remark 2 following Lemma 2, and by Lemma 4, there exist polynomials P(x) and q(x) for which

$$|| |x| - (1/P(x))||_{L_{\infty}[-A,A]} \le A\pi^2/2n,$$
 (1.2)

$$\left\| \frac{1}{f(|x|)} - \frac{1}{q(x)} \right\|_{L_{\infty}[-A,A]} \leqslant \frac{C_8(\log n)^{1/\rho}}{n}. \tag{1.3}$$

To obtain bounds for $x \in (-\infty, \infty)$, we note that

$$\left| \frac{|x|}{f(|x|)} - \frac{1}{P(x)} \frac{1}{q(x)} \right| \le \frac{1}{f(|x|)} \left| |x| - \frac{1}{P(x)} \right| + \frac{1}{P(x)} \left| \frac{1}{f(|x|)} - \frac{1}{q(x)} \right|. \tag{1.4}$$

For $0 \leq |x| \leq (4\omega^{-1} \log n)^{1/n}$,

$$\frac{1}{f(|x|)} \left| |x| - \frac{1}{P(x)}| - C_9(\log n)^{1/2} n^{-1}.$$
 (1.5)

For $|x| > (4\omega^{-1} \log n)^{1/p}$, by using the definition of lower type and the fact that

$$P(x)^{1-1} \le x$$
 for $x = -(4\omega^{-1} \log n)^{1/n}$.

we get, for all large n,

$$\frac{1}{f(-x_{-})} \left| -x_{-} - \frac{1}{p(x)} \right| \approx \frac{2}{f(-x_{-})} - \frac{2}{e^{-e^{-e^{-(1-\epsilon)}}}} - n^{-3}. \tag{1.6}$$

Similarly we get, for $0 < 1/2 x > (4\omega^{-1} \log n)^{1/p}$, by using Remark 2 following Lemma 2 with $A = (4\omega^{-1} \log n)^{1/p}$, and Lemma 4,

$$\frac{1}{P(x)} \left| \frac{1}{f(\lfloor x \rfloor)} - \frac{1}{q(x)} \right| = \left(\lfloor x \rfloor + \frac{C_{10}(\log n)^{1/2}}{n} \right) \left(\frac{C_{11}(\log n)^{1/2}}{n} \right)$$

$$= C_{12} \frac{(\log n)^{2/n}}{n}.$$
(1.7)

Now we consider $|x|^2 = (4\omega^{-1} \log n)^{1/p}$. By Remark 1 following Lemma 2 we have, for such |x|.

$$\frac{1}{P(x)}$$

By construction,

$$q(x) \stackrel{\sim}{=} \sum_{k>n} a_k x^k.$$

Hence, for all large n,

$$\frac{1}{P(x)} \left| \frac{1}{f(-x^{-1})} - \frac{1}{g(x)} \right| \\
= \left(\frac{1}{f(-x^{-1})} - \frac{1}{\sum_{k \le n} a_k x^k} \right) \\
= \left(\frac{4\omega^{-1} \log n}{1 \log n} \right)^{1/p} \left(\frac{1}{f[(4\omega^{-1} \log n)^{1/p}]} - \frac{1}{\sum_{k \le n} a_k (4\omega^{-1} \log n)^{1/p}} \right) \\
= \left(\frac{4}{\omega} \log n \right)^{1/p} 3 \left\{ f[(4\omega^{-1} \log n)^{1/p}] \right\}^{-1}.$$
(1.8)

Since

$$\sum_{k \leq n} a_k (4\omega^{-1} \log n)^{k/\rho} = f[(4\omega^{-1} \log n)^{1/\rho}] - \sum_{k \geq n+1} a_k (4\omega^{-1} \log n)^{k/\rho},$$

and

$$\sum_{k>n+1} a_k (4\omega^{-1} \log n)^{k/\rho} \leqslant \sum_{k>n+1} \left(\frac{\rho e \tau (1+\epsilon) \, 4\omega^{-1} \log n}{k} \right)^{k/\rho} \leqslant \frac{1}{n^{1/2}},$$

we have

$$\sum_{k \le n} a_k (4\omega^{-1} \log n)^{k/\rho} \geqslant f[(4\omega^{-1} \log n)^{1/\rho}] - \frac{1}{n^{1/2}} \geqslant 2^{-1} f[(4\omega^{-1} \log n)^{1/\rho}].$$

By using the definition of lower type, we get

$$f[(4\omega^{-1}\log n)^{1/\rho}] \geqslant \exp(4(1-\epsilon)\log n) > n^3.$$
 (1.9)

Equation (1.1) follows from (1.5)–(1.9). If f(z) is even, then by using $S_n(x)$, the *n*th partial sum of f(x), instead of q(x), in (1.7), we get for $0 \le |x| \le (4\omega^{-1} \log n)^{1/\rho}$, by Lemmas 2 and 6, for some $\delta > 1$,

$$\frac{1}{P(x)} \left| \frac{1}{f(x)} - \frac{1}{S_n(x)} \right| \le \left(|x| + \frac{C_{14}(\log n)^{1/\rho}}{n} \right) \delta^{-n} < n^{-3}. \quad (1.10)$$

For $|x| \ge (4\omega^{-1} \log n)^{1/\rho}$, by using Remark 2 following Lemma 2 we get, for all large n,

$$\frac{1}{P(x)} \left| \frac{1}{f(x)} - \frac{1}{S_n(x)} \right| \leq \frac{|x|}{f(x)} + \frac{|x|}{S_n(x)} \\
\leq \frac{(4\omega^{-1} \log n)^{1/\rho}}{f((4\omega^{-1} \log n)^{1/\rho})} + \frac{(4\omega^{-1} \log n)^{1/\rho}}{S_n((4\omega^{-1} \log n)^{1/\rho})} \\
\leq \frac{3(4\omega^{-1} \log n)^{1/\rho}}{f((4\omega^{-1} \log n)^{1/\rho})}, \tag{1.11}$$

since as earlier

$$2S_n((4\omega^{-1}\log n)^{1/\rho}) \geqslant f((4\omega^{-1}\log n)^{1/\rho}).$$

The Remark after Theorem 1 follows from (1.5), (1.6), (1.9), (1.10), and (1.11).

THEOREM 2. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_k \ge 0$ $(k \ge 0)$, be an entire function of order ρ $(0 < \rho < \infty)$ and type τ $(0 < \tau < \infty)$. Then for every polynomial P(x) of large degree n, we have,

$$\left\| \frac{x^{1/2}}{f(x^{1/2})} - \frac{1}{P(x)} \right\|_{L_{\infty}[0,\infty)} \ge \left(\frac{\log n}{2\tau} \right)^{1/\rho} \frac{(9n)^{-1}}{f[(\log n/2\tau)^{2/\rho}n^{-2}]} . \tag{2.1}$$

Proof. Assume the conclusion is false. Then for infinitely many n,

$$\frac{|x^{1/2}|}{f(x^{1/2})} = \frac{1}{P(x)} \Big|_{t=[0, +1]} + \left(\frac{\log n}{2\tau}\right)^{1/n} \frac{(9n)^{-1}}{f[(\log n/2\tau)^{2/n}n^{-2}]}.$$
 (2.2)

Set $\beta_n = ((\log n)/2\tau)^{1/n}, n = 1, 2,...$ From (2.2) we get, for

$$x \in [\beta_n^{-2}n^{-2}, \beta_n^{-2}], \qquad \frac{1}{P(x)} = \frac{x^{1/2}}{f(x^{1/2})} = \left(\frac{\log n}{2\tau}\right)^{1/n} \frac{(9n)^{-1}}{\psi_n}$$
$$= \frac{\beta_n n^{-1}}{\psi_n} = \frac{\beta_n n^{-1}}{9\psi_n} = \frac{8}{9} \beta_n n^{-1} \psi_n^{-1}.$$

where

$$\psi_n = f(\beta_n n^{-1}).$$

Hence

$$\max_{[\beta_n^2 n^{-2}, \beta_n]} P(x) = (9/8) n \psi_n \beta_n^{-1}. \tag{2.3}$$

Now by applying Lemma 3 to (2.3), we get

$$P(0) = \frac{9}{8} n \psi_n \beta_n^{-1} T_n \left(\frac{n^2}{n^2} - \frac{1}{1} \right) = 9n \psi_n \beta_n^{-1}. \tag{2.4}$$

On the other hand, we have by (2.2),

$$P(0)^{-1} < \beta_n (9n\psi_n)^{-1}. \tag{2.5}$$

Equations (2.4) and (2.5) clearly contradict (2.2).

THEOREM 3. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 = 0$, $a_k \ge 0$ (k-1), be an even entire function of order ρ $(0 < \rho + \infty)$ type τ and lower type ω $(0 < \omega \le \tau < \infty)$. Then there exists a constant $C_{15} \ge 0$ and a sequence of rational functions $r_{2n}(x)$ of degree at most 2n for which, for all large n,

$$({}^{\dagger}x_{-})f(x)) = r_{2n}(x)|_{L_{\infty}(-r_{+},\tau)} = e^{-C_{15}n^{3/2}}.$$
 (3.1)

Proof. |x|/f(|x|), $S_n(x)$, and $Q_n^*(x) = n^{1/2p}Q_n(xn^{-1/2p})$ are even functions. Set $r_{2n}(x) = Q_n^*(x)/S_n(x)$. Then

$$\left| \frac{x}{f(x)} - r_{2n}(x) \right| = \left| \frac{x}{f(x)} - \frac{Q_n^*(x)}{f(x)} - \frac{Q_n^*(x)}{f(x)} - \frac{Q_n^*(x)}{S_n(x)} \right|$$

$$= \left| \frac{x}{f(x)} - \frac{Q_n^*(x)}{f(y)} \right| - Q_n^*(x) \left| \frac{1}{f(x)} - \frac{1}{S_n(x)} \right|. \quad (3.2)$$

Each of the above functions being even, we consider only $[0, \infty)$.

By Lemma 1, for all large n,

$$\left| \frac{x}{f(x)} - \frac{Q_n^*(x)}{f(x)} \right|_{L_{\infty}[0, n^{1/2\rho}]} \leqslant a_0^{-1} | x - Q_n^*(x) |_{L_{\infty}[0, n^{1/2\rho}]} \leqslant e^{-C_{16}n^{-1/2}}.$$
 (3.3)

On the other hand, for $x \leq n^{1/2\rho}$, by the definition of lower type,

$$\left| \frac{x}{f(x)} - \frac{Q_n^*(x)}{f(x)} \right| \leqslant \frac{1}{f(x)} |x - Q_n^*(x)|$$

$$\leqslant e^{-x^{\rho_{\omega}(1-\epsilon)}} x \left| \frac{P_n^*(-xn^{-1/2\rho})}{P_n^*(xn^{-1/2\rho}) + P_n^*(-xn^{-1/2\rho})} \right|$$

$$< e^{-C_{17}n^{-1/2}}, \tag{3.4}$$

for n such that

$$P_n^*(-xn^{-1/2\rho}) \geqslant 0.$$

Similarly, we show for $[0, n^{1/2\rho}]$,

$$|Q_n^*(x)| \left| \frac{1}{f(x)} - \frac{1}{S_n(x)} \right| \le (|x| + C_{18} n^{1/2\rho} e^{-C_{19} n^{1/2}}) e^{-C_{20} n^{1/2}} \le e^{-C_{21} n^{1/2}}.$$
(3.5)

On the other hand, for $x^{2\rho} \geqslant n > n_0$,

$$|Q_{n}^{*}(x)| \left| \frac{1}{f(x)} - \frac{1}{S_{n}(x)} \right| \leq \left| \frac{Q_{n}^{*}(x)}{f(x)} \right| + \left| \frac{Q_{n}^{*}(x)}{S_{n}(x)} \right| \leq |x| \left(\frac{1}{f(x)} + \frac{1}{S_{n}(x)} \right)$$

$$\leq n^{1/2\rho} \left(\frac{1}{f(n^{1/2\rho})} + \frac{1}{S_{n}(n^{1/2\rho})} \right) \leq \frac{3n^{1/2\rho}}{f(n^{1/2\rho})}$$

$$\leq e^{-C_{22}n^{1/2}}. \tag{3.6}$$

As earlier, it is easy to check that $2S_n(n^{1/2\rho}) \geqslant f(n^{1/2\rho})$, and also that $|Q_n^*(x)| \leqslant |x|$. Hence (3.1) follows from (3.3)–(3.6).

THEOREM 4. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 > 0$, $a_k \ge 0$ $(k \ge 1)$, $a_k \ge a_{k+1}$ $(k \ge 1)$, be a noneven entire function of order ρ $(0 < \rho < \infty)$, type τ , and lower type ω $(0 < \omega \le \tau < \infty)$. Then there exists a rational function $r_{2n}^*(x)$ of degree at most 2n for which, for all large n,

$$\left\|\frac{|x|}{f(|x|)} - r_{2n}^*(x)\right\|_{L_{\infty}(-\infty,\infty)} \leqslant e^{-C_{24}n^{1/2}},\tag{4.1}$$

where $r_{2n}^*(x) = r_n(x) Q_n^*(x)$.

Proof. By Lemma 5,

$$\frac{1}{f(|x|)} = r_n(x)_{\|I_{L_1}(-x_1,x_1)\|} e^{-C_{2\gamma}n^{1/2}}.$$
 (4.2)

Now write

$$\left| \frac{X_{\perp}}{f(-x_{\perp})} - r_{2n}(x) \right| = \left| \frac{X_{\perp}}{f(-x_{\perp})} - \frac{Q_{n}^{*}(x)}{f(-x_{\perp})} - \frac{Q_{n}^{*}(x)}{f(-x_{\perp})} - Q_{n}^{*}(x) r_{n}(x) \right| - \frac{1}{f(-x_{\perp})} \left| -x - Q_{n}^{*}(x) - Q_{n}^{*}(x) - Q_{n}^{*}(x) - \frac{1}{f(-x_{\perp})} - r_{n}(x) \right|.$$
(4.3)

As earlier, for $0 = -x = n^{1/2o}$, we get

$$\frac{1}{f(|x|)} \left| x - Q_n^*(x) - C_{26}n^{1/2}e^{-C_{25}n^{1/2}} - e^{-C_{28}n^{1/2}} \right|$$
 (4.4)

On the other hand, for $x = n^{1/2n}$,

$$\frac{1}{f(-x^{-1})} \left| -x - Q_n^*(x) - \frac{1}{\left| P_n^*(-xn^{-1/2n}) - P_n^*(-xn^{-1/2n}) - \frac{1}{\left|$$

if $P_n^*(-xn^{-1/2\rho}) \ge 0$. Similarly, for $0 \le x = n^{1/2\rho}$.

$$||Q_n^*(x)|| \left| \frac{1}{f(|x|^2)} - r_n(x) \right| \le (|x| + n^{1/2n} e^{-C_{30}n^{1/2}}) e^{-C_{31}n^{1/2}}.$$
 (4.6)

On the other hand, for $x = n^{1/2\rho}$,

$$Q_n^*(x) \left| \frac{1}{f(-x^-)} - r_n(x) \right| = \frac{x}{f(-x^-)} - \frac{x}{\sum_{k \in n} a_{2k} x^{2k}}. \tag{4.7}$$

since from the construction of $r_n(x)$,

$$r_n(x) \le \left(\sum_{k \le n} a_{2k} x^{2k}\right)^{-1}$$

By our assumption on the coefficients, we have

$$2\sum_{k \in n} a_{2k} v^{2k} = \sum_{k \in n} a_k v^k. \tag{4.8}$$

As before, we can show

$$2\sum_{l \le n} a_l n^{l/2p} \geqslant f(n^{1/2p}). \tag{4.9}$$

From (4.7), (4.8), and (4.9), we get for $|x| > n^{1/2\rho}$,

$$|Q^*(x)| \left| \frac{1}{f(|x|)} - r_n(x) \right| \le \frac{5n^{1/2\rho}}{e^{n^{1/2}\omega(1-\epsilon)}} \le e^{-C_{22}n^{1/2}}.$$
 (4.10)

Equation (4.1) follows from (4.4), (4.5), (4.6), and (4.10).

REFERENCES

- 1. R. P. Boas, "Entire Functions," Academic Press, New York, 1954.
- P. Erdös, D. J. Newman, and A. R. Reddy, Rational approximation (II), Advan. Math., to appear.
- 3. G. FREUD, D. J. NEWMAN, AND A. R. REDDY, Rational approximation to $e^{-|x|}$ on the whole real line, *Quart. J. Math. Oxford Ser.* **28** (1977), 117–122.
- K. N. Lungu, Best approximation of the function | x | by rational functions of the form 1/P_n(x), Sibirsk. Mat. Z. 15 (1974), 1152-1156.
- 5. D. J. Newman, Rational approximation to |x|, Michigan Math. J. 11 (1964), 11-14.
- 6. D. J. NEWMAN AND A. R. REDDY, Rational approximation to $|x|/1 + x^{2m}$ on $(-\infty, +\infty)$, J. Approximation Theory 19 (1977), 231–238.
- A. R. Reddy, A note on rational approximation, Bull. London Math. Soc. 8 (1976), 41-43
- 8. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," MacMillan Co., New York, 1963.