Rational Approximation, III

D. J. Newman

Yeshiia Unicersity, New York, New York 10033

AND
A. R. Reddy

Institute for Advanced Study, Princeton, New Jersey 08540
Communicated by Oved Shisha
Received September 19, 1975

DEDICATED TO ATLE SELBERG ON HIS SIXTIETH BIRTHDAY

Let $f(z)=\sum_{k=0}^{\alpha} a_{z} z^{k}$ be an entire function. Denote $M(r)=\max _{z \mid \ldots r}|f(z)|$; $S_{n}(z)$ denotes the nth partial sum of $f(z)$. As usual, the order $\rho(0 \leqslant \rho \leqslant \infty)$ of $f(z)$ is

$$
\limsup _{r \rightarrow \alpha} \frac{\log \log M(r)}{\log r} .
$$

If $0<\rho<\infty$, then the type τ and the lower type $\omega(0<\omega \leqslant \tau<\infty)$ of $f(z)$ are

$$
{\underset{\omega}{\tau}}_{\tau}^{=}=\lim _{r \rightarrow \infty} \sup \inf \frac{\log M(r)}{r^{o}} .
$$

Recently approximation to e^{-x} on $[0, \infty)$ has attracted the attention of several mathematicians. In [3], it has been established that $e^{-|x|}$ can be approximated on $(-\infty, \infty)$ by reciprocals of polynomials of degree n with an error $\leqslant C_{1}(\log n) n^{-1}$, but not better than $C_{2} n^{-1}$. Further, we have shown that $e^{-|x|}$ can be approximated on $(-\infty, \infty)$ by rational functions of degree n with an error $\leqslant e^{-C_{3}(n)^{1 / 2}}$ but not better than $e^{-C_{4}(n)^{1 / 2}}$. In this note we obtain error bounds to $|x| e^{-|x|}$ on $(-\infty, \infty)$ by reciprocals of polynomials of degree n and also by rational functions of degree n. We show here that the minimum error by rational functions of degree n is much smaller than the one obtained by reciprocals of polynomials of degree n. Throughout our work $C_{1}, C_{2}, C_{3}, \ldots$ denote suitable positive constants, and $\epsilon, 0<\epsilon<1$, is arbitrary.

Lemmas

Lemma $1[5, \mathrm{p} .11]$. There exists a sequence of rational functions: $Q_{n}(x)$;, for which, for all $n=5$.

$$
\therefore \quad Q_{n}(x)_{L, 1+1.1\}} \quad 3_{c} \cdots:
$$

In fact, one can take

$$
\left.Q_{n, 1}(x) \quad x \left\lvert\, \frac{P_{n}(x)}{P_{n}(x)}-P_{n}\right., x\right) .
$$

where

$$
P_{n}(x) \quad \prod_{0}^{1}(x ; \xi), \quad \xi \quad \exp \left(\quad \mid n^{1} \dot{u}_{3} .\right.
$$

Remark. For every positive A.

$$
x \quad A Q_{n}(x / A)_{t, 1} \quad 3 A e^{n} .
$$

This follows easily from Lemma i.
Lemma 2 [6, p. 232]. There is a polynomial $P_{n}(x)(n-1,2, \ldots)$ of degree 2n such that

$$
\therefore \quad(1 / P(x))_{2,1}, 1 \quad \pi^{2} 2 n
$$

Remark I [6. p. 234].

$$
P_{n}(x) ; \quad x \quad \text { for } \quad x \quad ;
$$

Remark 2. For each A 0.

$$
\therefore \quad P_{n}\left(\begin{array}{lll}
A & A & 1 \pi^{2} \\
2 n, 1
\end{array}\right.
$$

This follows easily from Lemma 2.
Lemma 3 [8, p. 68]. Let $P(x)$ be a polynomial of degrece at most n satisfing $\mid P(x)$: M on $[a, b]$. Then outside $[a, b]$,
 contire function of order of (0) o whe to and buer mo es
$(0<\omega \leqslant \tau<\infty)$. Then there exists a constant $C_{5}(>0)$ and a sequence of polynomials $\left\{P_{n}(x)\right\}_{n=1}^{\infty}$ of degree n such that, for $n>1$,

$$
\frac{1}{f(x)}-\frac{1}{P_{n}(x)} \|_{L_{\infty}(-x, x)} \leqslant \frac{C_{5}(\log n)^{1 / p}}{n} .
$$

Lemma 5 [3, p. 122]. Let $f(z)$ satisfy the assumptions of Lemma 4. Then there exists a constant $C_{6}(>0)$ and a sequence of rational functions $\left\{r_{n}(x)\right\}_{n=1}^{\infty}$ of degree n such that, for any $n \geqslant 1$,

$$
\left|(1 / f(|x|))-r_{n}(x)\right|_{L_{\infty}(-\sigma, x)} \leqslant e^{-C_{6^{n}} 1^{1 / 2}} .
$$

Lemma 6 [7]. Under the same assumptions, we have for the polynomials $P_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$,

$$
\limsup _{n \rightarrow x}\left|\frac{1}{f(x)}-\frac{1}{P_{n}(x)} \|_{L_{\alpha}[0, x)}\right|^{1 / n}<1
$$

Theorems

TheOrem 1. Let $f(z)==\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1)$, be an entire function of order $\rho(0<\rho<\infty)$, type τ, and lower type $\omega(0<\omega \leqslant \tau<\infty)$. Then there exists a polynomial $P_{n}{ }^{*}(x)$ of degree n for which, for all $n>1$,

$$
\begin{equation*}
\frac{x \mid}{f(x)}-\frac{1}{P_{n}{ }^{*}(x)} \|_{L_{\infty}(-\infty, x)} \leqslant \frac{C_{g}(\log n)^{2 / \rho}}{n} . \tag{1.1}
\end{equation*}
$$

Remark. If $f(z)$ is even, then $2 / \rho$ in (1.1) can be replaced by $1 / \rho$.
Proof. By Remark 2 following Lemma 2, and by Lemma 4, there exist polynomials $P(x)$ and $q(x)$ for which

$$
\begin{align*}
&\||x|-(1 / P(x))\|_{L_{\infty}[-A, A]} \leqslant A \pi^{2} / 2 n, \tag{1.2}\\
& \| \frac{1}{f(\mid x)}-\left.\frac{1}{q(x)}\right|_{L_{\infty}[-A, A]} \leqslant \frac{C_{8}(\log n)^{1 / p}}{n} . \tag{1.3}
\end{align*}
$$

To obtain bounds for $x \in(-\infty, \infty)$, we note that

$$
\begin{align*}
& \left|\frac{|x|}{f(|x|)}-\frac{1}{P(x) q(x)}\right| \\
& \quad \leqslant \frac{1}{f(\mid x)}| | x\left|-\frac{1}{P(x)}\right|+\frac{1}{P(x)}\left|\frac{1}{f(|x|)}-\frac{1}{q(x)}\right| \tag{1.4}
\end{align*}
$$

For $0<1 x:\left(4 \omega^{1} \log n\right)^{1}$.

$$
\begin{array}{c|cc|}
\frac{1}{x} & x & P(x) \tag{1.5}\\
\hline f(x) & C_{g}(\log n)^{2} n
\end{array}
$$

For $x\left(4 \omega^{-1} \log n\right)^{r}$, by using the definition of lower tye and the fact that

$$
\left.P(x)^{1-1} \leqslant x \text { for } x \quad(t \omega)^{1} \log n\right)^{1}
$$

we get, for all large n,

$$
\begin{array}{c|cc:ccc}
1 & x & \frac{2}{P(x)} & \frac{2}{f(x)} & 2 x & n \\
\hline f(x) & x & (1.6)
\end{array}
$$

Similarly we get, for $0 \quad x \quad\left(4 \omega{ }^{\prime} \log n\right)^{1} \cdots$ by using Remark 2 fol lowing Lemma 2 with $A-\left(4 \omega{ }^{1} \log n\right)^{1 / 4}$, and Lemma 4 .
$\frac{1}{P(x)} \left\lvert\, \frac{1}{f(x)}-\frac{1}{q(x)} \quad\left(x \quad C_{n}\left(\frac{\log n)^{2}}{n} \| \frac{C_{n}(\operatorname{tog} n)^{\prime}}{n}\right)\right.\right.$

$$
C_{12} \frac{(\log n)^{2},}{n}
$$

Now we consider $\left.x \quad(4 \omega)^{1} \log n\right)^{1}$. By Remark I following Lemma 2 we have. for such x.

$$
\frac{1}{P(x)} \quad y
$$

By construction,

$$
q(x) \cdot \sum_{n=n} a_{n} x^{-x}
$$

Hence, for all large n,

$$
\begin{align*}
& \frac{1}{P(x)}\left|\frac{1}{f\left(x^{\prime}\right)} \frac{1}{g(x)}\right| \\
& x\left(\begin{array}{cc}
1 & \frac{1}{f(x)}-a_{k} x^{2}
\end{array}\right) \\
& \left.\left(4 \omega^{1} \log n\right)^{1 \cdot n} \frac{1}{f\left[\left(4 \omega^{-1} \log n\right)^{1}\right]^{2}} \quad \sum a_{k}(4 \omega)^{1} \log n\right)^{1}, \tag{1.8}\\
& \left(\frac{4}{\omega} \log n\right)^{1} 3: j^{\prime}\left[(4 \omega)^{1} \log n\right)^{1} 1 l^{\prime}
\end{align*}
$$

Since

$$
\sum_{k_{\leqslant} \leqslant n} a_{k}\left(4 \omega^{-1} \log n\right)^{k / \rho}=f\left[\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right]-\sum_{k \geqslant n+1} a_{k}\left(4 \omega^{-1} \log n\right)^{k / \rho},
$$

and

$$
\sum_{k \geqslant n+1} a_{k}\left(4 \omega^{-1} \log n\right)^{k / \rho} \leqslant \sum_{k \geqslant n+1}\left(\frac{\rho e \tau(1+\epsilon) 4 \omega^{-1} \log n}{k}\right)^{k / \rho} \leqslant \frac{1}{n^{1 / 2}}
$$

we have

$$
\sum_{k \leqslant n} a_{k}\left(4 \omega^{-1} \log n\right)^{k / \rho} \geqslant f\left[\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right]-\frac{1}{n^{1 / 2}} \geqslant 2^{-1} f\left[\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right] .
$$

By using the definition of lower type, we get

$$
\begin{equation*}
f\left[\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right] \geqslant \exp (4(1-\epsilon) \log n)>n^{3} \tag{1.9}
\end{equation*}
$$

Equation (1.1) follows from (1.5)-(1.9). If $f(z)$ is even, then by using $S_{n}(x)$, the nth partial sum of $f(x)$, instead of $q(x)$, in (1.7), we get for $0 \leqslant|x| \leqslant$ $\left(4 \omega^{-1} \log n\right)^{1 / \rho}$, by Lemmas 2 and 6 , for some $\delta>1$,

$$
\begin{equation*}
\frac{1}{P(x)}\left|\frac{1}{f(x)}-\frac{1}{S_{n}(x)}\right| \leqslant\left(|x|+\frac{C_{14}(\log n)^{1 / p}}{n}\right) \delta^{-n}<n^{-3} . \tag{1.10}
\end{equation*}
$$

For $|x| \geqslant\left(4 \omega^{-1} \log n\right)^{1 / \rho}$, by using Remark 2 following Lemma 2 we get, for all large n,

$$
\begin{align*}
\frac{1}{P(x)}\left|\frac{1}{f(x)}-\frac{1}{S_{n}(x)}\right| & \leqslant \frac{|x|}{f(x)}+\frac{|x|}{S_{n}(x)} \\
& \leqslant \frac{\left(4 \omega^{-1} \log n\right)^{1 / \rho}}{f\left(\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right)}+\frac{\left(4 \omega^{-1} \log n\right)^{1 / \rho}}{S_{n}\left(\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right)} \\
& \leqslant \frac{3\left(4 \omega^{-1} \log n\right)^{1 / \rho}}{f\left(\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right)}, \tag{1.11}
\end{align*}
$$

since as earlier

$$
2 S_{n}\left(\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right) \geqslant f\left(\left(4 \omega^{-1} \log n\right)^{1 / \rho}\right)
$$

The Remark after Theorem 1 follows from (1.5), (1.6), (1.9), (1.10), and (1.11).
TheOrem 2. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{k} \geqslant 0(k \geqslant 0)$, be an entire function of order $\rho(0<\rho<\infty)$ and type $\tau(0<\tau<\infty)$. Then for every polynomial $P(x)$ of large degree n, we have,

$$
\begin{equation*}
\left\|\frac{x^{1 / 2}}{f\left(x^{1 / 2}\right)}-\frac{1}{P(x)}\right\|_{L_{\infty}[0, \infty)} \geqslant\left(\frac{\log n}{2 \tau}\right)^{1 / \rho} \frac{(9 n)^{-1}}{f\left[(\log n / 2 \tau)^{2 / \rho} n^{-2}\right]} . \tag{2.1}
\end{equation*}
$$

Proof. Assume the conclusion is false. Then for infinitely many n.

$$
\begin{equation*}
\left.\frac{x^{12}}{f\left(x^{1}\right)} \quad \frac{1}{\left.P(x)^{1}\right)} \quad\left(\frac{\log n}{2-}\right)^{1 \ldots} \frac{(9 n)^{1}}{f(\log n 2 \tau)^{2} n-1}\right] \tag{2.2}
\end{equation*}
$$

Set $\beta_{n} \cdots((\log n) 2 \tau)^{1} \cdots \quad 1$. $2 \ldots$. . From (2.2) we get. for

$$
\begin{aligned}
& \frac{B_{n} n^{1}}{\psi_{n}} \quad \frac{B_{n} n^{\prime}}{9 \|_{n}} \quad \frac{8}{9}^{8} \beta_{n} n^{\prime} \psi_{n}{ }^{\prime} .
\end{aligned}
$$

where

$$
\|_{n} \cdots\left(\beta_{n} n^{1}\right)
$$

Hence

Now by applying Lemma 3 to (2.3), we get

$$
\begin{equation*}
P(0) \quad \frac{9}{8} n \psi_{n} \beta_{n}^{1} T_{n}\left(\frac{n^{2}}{n^{2}}-\frac{1}{1}\right) \cdot \varphi_{n} \psi_{n} B_{n}^{1} \tag{2.4}
\end{equation*}
$$

On the other hand. we have by (2.2).

$$
\begin{equation*}
P_{(0)} \quad \beta_{n}\left(9 n \psi_{n}\right) \tag{2.5}
\end{equation*}
$$

Equations (2.4) and (2.5) clearly contradict (2.2).
Theorem 3. Let $f(z)=\sum a_{1} z^{-1}, a_{0} \quad 0, a_{i}=0$ (k 1). be an aren contire function of order $\rho(0 \leqslant \rho \cdot x)$ type τ and lower type a $(0 \cdots \omega \cdots \tau<\infty)$. Then there exists a constant $C_{1,5} \sim 0$ and a sequence of rational functions $r_{2 n}(x)$ of degree at most $2 n$ for which. for all large n.

$$
\begin{equation*}
\left.(x f(x)) \quad r_{2 n}(x)_{1, x}, \ldots\right) \quad c_{15}, c_{1} . \tag{3.1}
\end{equation*}
$$

Proof. $x f(x), S_{n}(x)$, and $Q_{n}{ }^{*}(x) \quad n^{1 / 2 Q_{n}} Q_{n}\left(x n^{1 / 2 p}\right)$ are even functions. Set $r_{2 n}(x)=Q_{n}{ }^{*}(x) / S_{n}(x)$. Then

$$
\begin{aligned}
\left\lvert\, \frac{x}{f(x)}\right. & -r_{2 n}(x) \mid
\end{aligned}\left|\begin{array}{|cccc|c}
\frac{x}{f(x)} & \frac{Q_{n}^{*}(x)}{f(x)} & \frac{Q_{n}^{*}(x)}{f(x)} & \frac{Q_{n}^{*}(x)}{S_{n}(x)}
\end{array}\right|
$$

Each of the above functions being even. we consider only [0. γ).

By Lemma 1, for all large n,

$$
\begin{equation*}
\left|\frac{x}{f(x)}-\frac{Q_{n}^{*}(x)}{f(x)}\right|_{L_{x}\left[0, n^{1 / 2 f}\right]} \leqslant a_{0}^{-1}\left|x-Q_{n}^{*}(x)\right|_{L_{\alpha}\left[0, n^{1 / 2 \rho}\right]} \leqslant e^{-C_{16^{n}}^{1 / 2}} \tag{3.3}
\end{equation*}
$$

On the other hand, for $x \leqslant n^{1 / 2 \rho}$, by the definition of lower type,

$$
\begin{align*}
\left|\frac{x}{f(x)}-\frac{Q_{n}^{*}(x)}{f(x)}\right| & \leqslant \frac{1}{f(x)}\left|x-Q_{n}^{*}(x)\right| \\
& \leqslant e^{-x^{\circ} \omega(1-\epsilon)} x\left|\frac{P_{n}^{*}\left(-x n^{-1 / 2 \rho}\right)}{P_{n}^{*}\left(x n^{-1 / 2 \rho}\right)+P_{n}^{*}\left(--x n^{-1 / 2 \rho}\right)}\right| \\
& <e^{-C_{1 z^{n}}^{1 / 2},} \tag{3.4}
\end{align*}
$$

for n such that

$$
P_{n} *\left(-x n^{-1 / 2 \rho}\right) \geqslant 0
$$

Similarly, we show for $\left[0, n^{1 / 2 \rho}\right]$,

$$
\begin{equation*}
\left|Q_{n}^{*}(x)\right|\left|\frac{1}{f(x)}-\frac{1}{S_{n}(x)}\right| \leqslant\left(\mid x+C_{18^{\prime} n^{1 / 2 \rho}} e^{-C_{19^{n^{1 / 2}}}}\right) e^{-C_{20^{n^{1}}}} \leqslant e^{-C_{31} n^{n^{1 / 2}}} \tag{3.5}
\end{equation*}
$$

On the other hand, for $x^{2 \rho} \geqslant n>n_{0}$,

$$
\begin{align*}
\left.\left|Q_{n}{ }^{*}(x)\right| \frac{1}{f(x)}-\frac{1}{S_{n}(x)} \right\rvert\, & \left.\leqslant\left|\frac{Q_{n}^{*}(x)}{f(x)}\right|+\left|\frac{Q_{n}^{*}(x)}{S_{n}(x)}\right| \leqslant x \right\rvert\,\left(\frac{1}{f(x)}+\frac{1}{S_{n}(x)}\right) \\
& \leqslant n^{1 / 2_{0}}\left(\frac{1}{f\left(n^{1 / 2 \rho}\right)}+\frac{1}{S_{n}\left(n^{1 / 2 \rho}\right)}\right) \leqslant \frac{3 n^{1 / 2 \rho}}{f\left(n^{1 / 2 \rho}\right)} \\
& \leqslant e^{-C_{22^{n^{1 / 2}}}} . \tag{3.6}
\end{align*}
$$

As earlier, it is easy to check that $2 S_{n}\left(n^{1 / 2 \rho}\right) \geqslant f\left(n^{1 / 2 \rho}\right)$, and also that $\left|Q_{n}{ }^{*}(x)\right| \leqslant|x|$. Hence (3.1) follows from (3.3)-(3.6).

Theorem 4. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1), a_{k} \geqslant a_{k+1}$ ($k \geqslant 1$), be a noneven entire function of order $\rho(0<\rho<\infty)$, type τ, and lower type $\omega(0<\omega \leqslant \tau<\infty)$. Then there exists a rational function $r_{2 n}^{*}(x)$ of degree at most $2 n$ for which, for all large n,

$$
\begin{equation*}
\frac{|x|}{f(|x|)}-r_{2 n}^{*}(x) L_{L_{x}(-x, x)}^{\|} \leqslant e^{-C_{24^{n^{1 / 2}}}^{1 / 2}}, \tag{4.1}
\end{equation*}
$$

where $r_{2 n}^{*}(x)=r_{n}(x) Q_{n}^{*}(x)$.

Proof. By Lemma 5,

$$
\begin{equation*}
\frac{1}{f(x)} \quad r_{n}(x){ }_{1, x}, \ldots \tag{4.2}
\end{equation*}
$$

Now write

$$
\begin{aligned}
& \begin{array}{c|ccc:c}
1 \\
\hdashline f(x) & x & Q_{n}(x) & Q_{n}(x) & f(x) \\
\hdashline, x)
\end{array}
\end{aligned}
$$

As earlier. for 0 i $\quad n^{120}$, we get

On the other hand, for $x \quad n^{1,2}$,

$$
\begin{aligned}
& \begin{array}{c|cc}
\frac{1}{f(r)} & x & Q_{n}^{*}(x)
\end{array}
\end{aligned}
$$

if $P_{n}^{*}\left(\cdots-x n^{-1 / 2 \rho}\right) \cdot 0$. Similarly, for 0 x $n^{1 / 2}$.

On the other hand, for $x \cdot n^{1 \cdot 2}$,

$$
\begin{equation*}
Q_{n}^{*}(x)\left|\frac{1}{f(x)} \quad r_{n}(x)\right| \quad \frac{x}{f(x)} \sum_{n} a_{2,} x, \tag{4.7}
\end{equation*}
$$

since from the construction of $r_{n}(x)$,

$$
r_{n}(x) \because\left(\sum_{k=n} a_{2, k} r^{2 h}\right)^{\prime}
$$

By our assumption on the coefficients, we have

$$
\begin{equation*}
2 \sum a_{2} 1^{2} \quad \sum \tag{+8}
\end{equation*}
$$

As before, we can show

$$
\begin{equation*}
2 \sum_{l \leqslant n} a_{l} n^{l / 2_{p}} \geqslant f\left(n^{1 / 2 \rho}\right) \tag{4.9}
\end{equation*}
$$

From (4.7), (4.8), and (4.9), we get for $|x|>n^{1 / 2 \rho}$,

$$
\begin{equation*}
\left|Q^{*}(x)\right|\left|\frac{1}{f(|x|)}-r_{n}(x)\right| \leqslant \frac{5 n^{1 / 2 \rho}}{e^{n^{1 / 2} \omega(1-\epsilon)}} \leqslant e^{-C_{22^{2}}^{n^{1 / 2}}} \tag{4.10}
\end{equation*}
$$

Equation (4.1) follows from (4.4), (4.5), (4.6), and (4.10).

References

1. R. P. Boas, "Entire Functions," Academic Press, New York, 1954.
2. P. Erdös, D. J. Newman, and A. R. Reddy, Rational approximation (II), Advan. Math., to appear.
3. G. Freud, D. J. Newman, and A. R. Reddy, Rational approximation to $e^{-|x|}$ on the whole real line, Quart. J. Math. Oxford Ser. 28 (1977), 117-122.
4. K. N. Lungu, Best approximation of the function x by rational functions of the form $1 / P_{n}(x)$, Sibirsk. Mat. Z. 15 (1974), 1152-1156.
5. D. J. Newman, Rational approximation to $|x|$, Michigan Math. J. 11 (1964), 11-14.
6. D. J. Newman and A. R. Reddy, Rational approximation to $x / 1+x^{2 m}$ on $(-\infty$, $+\infty$), J. Approximation Theory 19 (1977), 231-238.
7. A. R. Reddy, A note on rational approximation, Bull. London Math. Soc. 8 (1976), 41-43.
8. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," MacMillan Co., New York, 1963.
