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Let f(z) = 3 ,_q @:z* be an entire function. Denote M(r) — max., . | f(2)i;
S.(z) denotes the nth partial sum of f(z). As usual, the order p (0 < p < )
of f(z) is
log log M(r)

lim sup —
. log r

If 0 < p < o0, then the type 7 and the lower type w (0 < w <! 7 < ) of

f(z) are
i SUP log M(r)
e inf o )

Recently approximation to ¢ on [0, o0) has attracted the attention of
several mathematicians. In [3], it has been established that e~1*! can be
approximated on (— oo, o) by reciprocals of polynomials of degree n with
an error <<Ci(log n) a1, but not better than Con—'. Further, we have shown
that e~1#1 can be approximated on (— o0, o) by rational functions of degree n
with an error <{e=¢'™""” but not better than e-C+"*, In this note we obtain
error bounds to | x | e71® on (— o, w) by reciprocals of polynomials of
degree n and also by rational functions of degree n. We show here that the
minimum error by rational functions of degree n is much smaller than the
one obtained by reciprocals of polynomials of degree n. Throughout our
work C,, C,, C;,... denote suitable positive constants, and ¢, 0 << e << 1,
is arbitrary.
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1R NEWMAN AND REDDY
LEMMAS

LEMMA 1[5, p. 1], There exists a sequence of rational functions ' Q4 x)},
for which, for all n - 5,

A (;)'n(-\() Ll ) }( -
n fact, one can rake
| [)n( v) ‘Pn'\ AN

Qv BT e

where

Puxi [l v €, £ expt bty

Remark. For every positive A,

X AQ, (A vy 34

Lyt
d

This follows eusily from Lemma 1.

LemmaA 2 {6, p. 232].  There is a polynomial P,(x) (i 1.2, of degree
2n such that

A PO 1 = 2n
Remark 1 [6, p. 234].
P.(x) ! Ay {or v
Remark 2. Yoreach 4 - 0,
A A
A T .
PoxlA4) L1 1] 2n

This follows easily from Lemma 2.

LEMMA 3 [8, p. 68].  Let P(x) be a polynomial of degree at miost n satisfving
P P(XY <7 M on {a, b). Then outside {a, b].

L2y
Plo. M (=,

Lemma 413, p.22). lerfizy Y, pa7ow, SRPS Prohe an

entire  function of order p (0 o w0 tvpe v and lower pupe o
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(0 < w <« 7 << ). Then there exists a constant Cy (>0) and a sequence of
polynomials { P, (x)}_, of degree n such that, for n > 1,

1 1 _ Cy(log m)'/»
i fﬂ N P .\Lw< e S 1

LEmmA 5 [3, p. 122).  Let f(z) satisfy the assumptions of Lemma 4. Then
there exists a constant Cg (>0) and a sequence of rational functions {r,(x)}m_q
of degree n such that, for any n =1,

AU X D) — Ol o) < @G

LEMMA 6 [7]. Under the same assumptions, we have for the polynomials
Pn('r) = Z;::(l alx‘,xl‘;

1
/

lim sup ' < 1.

n s f(r) nm o]

THEOREMS

THEOREM 1. Let f(2) == Yy o diz*, @y > 0, @, = 0 (k = 1), be an entire
Sfunction of order p (0 << p << o), type 7, and lower type w (0 < w < 7 < 0).
Then there exists a polynomial P, *(x) of degree n for which, for all n > 1,

X I _ Cylog n)?/»

T P e T "

Remark. 1f f(z) is even, then 2/p in (1.1) can be replaced by 1/p.

Proof. By Remark 2 following Lemma 2, and by Lemma 4, there exist
polynomials P(x) and ¢{(x) for which

Xl —= (POl aa1 < Am?/2n, (1.2)
| | _ Cy(log m*/»
‘} f—U\ ) (Y) YL l-a, A] = n . (.3

To obtain bounds for x € (— o0, o), we note that

| x|

fix)  P) q(x)'

1 |
) |+ P(x)‘ L EDIRCS

<

(1.4)

1
EnRIal
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For0 =[x . (4w *logmt v,
0 ! Colog my! o ! 1.3
B : L ou M L s
GOl | Gtlesmt ‘
For 'x . -« (4o tlogm)''», by using the definition of fower type and the
fact that
P(x)y— = x for  x  -(de Tloga)t-
we get, for all large n,
1 [ RN 2oy
— X . o] ERSRE RN 5 (1.6
FOx b P iy e K
Similarly we get, for 0 X (4w 'log m' -, by using Remark 2 fol-

lowing Lemma 2 with 4 - (4w 'log m)t and Lemma 4,

I L (v Ciptlog n)' i Cytiog m' |
Pxy | fCx ) glxy . n n
{i T)
¢, g
n
Now we consider * x ' (4w 'log m'». By Remark | following Lemma 2
we have. for such " v .
,,,1 -
P(x) '
By construction,
gy Y at
Hence, for all large n,
L L
P(x) l‘ fx ¢(x) |
| |
ey s
(o Vlog my o e Lo - L Loy
= (4w log n)t») oo addw Vog a)t o

Lw

1 1o
(3) tog 1) 3 (4w Ylog ' o]y b
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Since

Y. adwtlog ntle = f[(4o~tlog m)'/?] — Y a(4w'log n)tl,

kgn kpn+l
and
4 ko pet(l + €) 4w~ log m kio _l_
k;/;ﬂ axltes log ) = ,r;>§+1 ( k ) = nt/’
we have
Y a(dwtlog n)ke = fl(4w" log n)'/7] — 711/5 = 27 fl(4w log n)t/°].
rgn
By using the definition of lower type, we get
fl(dwt log n)'/?] == exp(4(1 — €) log n) > nd. (1.9)

Equation (1.1) follows from (1.5)-(1.9). If f(z) is even, then by using S,(x),
the nth partial sum of f(x), instead of ¢(x), in (1.7), we get for 0 < | x| <
(4w log n)t/°, by Lemmas 2 and 6, for some § > 1,

(x4 Collogny

P(x) lf(X) h S,sz) ‘ = 1 ) o << n73 (1.10)

For | x| = (4wl log n)!/>, by using Remark 2 following Lemma 2 we get,
for all large n,

l I I x| . | x|
P(Y) fxy S (\) T ) Sux)
. (Qotlogn)tic . (4w7tlog m)tie

= (Ao Tlog )7y S (4w log m)i)

34wt log n)'/
= F(@o g ')

(1.11)
since as earlier

25,((4wt log m)1?) > f((4e™" log ).
The Remark after Theorem 1 follows from (1.5), (1.6), (1.9), (1.10), and (1.11).

THEOREM 2. Let f(2) = Yo ax2%, a, = 0 (k = 0), be an entire function
of order p (0 < p << o0) and type 7 (0 < T << o). Then for every polynomial
P(x) of large degree n, we have,

x1/2 1

e

-~ ]Ogn 1/e (9’1)*1
( 27 ) fl(og n/27)2/°n-2] * 2.1)

Lolo, =) -
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Proof. Assume the conclusion is false. Then for infinitely many n,

X2 | ! log n )1 (9ny ! 2
TR PO 2 fldog 2z m 2y 77
Set B, « (tlogm) 27y o 1.2..... From (2.2} we gel, for
. i AN fog P (9n) !
L. 2.2 D2 oo = .
N B A B PV TV { 52 J b,
Bt ST S ;
l/fi 7‘}1/7/, 9 Bt 1,
where
i, ‘/-(3”17 .
Hence
max P(x) (9:8) nds, 83,0 {2.3)
3,50 =)
Now by applying Lemma 3 to (2.3), we get
9 L |
P(0) N mil, BT, (;]2' ]} © 9B (2.4
On the other hand. we have by (2.2}
POY Y B,0904,) (2.8

Equations (2.4) and (2.5) clearly contradict (2.2).

THEOREM 3. Ler f(2) = 3, gz  ay O, a, = 0 (A ). be an cren
entire function of order p (0 -7 p - x) type 7 and lower 1ype o
(0 <l w = 7« o). Then there exists a constant Cy5 - 0 and a sequence of
rational functions ry,(X) of degree at most 2n for which. for all large n,

(X fO) ) ey e Gt (3.1

Proof. 'x fC x), S,(xv). and Q,7(X) 20 (xn ) are even
functions. Set r,,(x) == 0, *(x)/S,(x). Then

‘.;}‘,ﬁ o (‘) 1“;\;, Q ,(, ) . Q” (y) . Q"f(*l ;
f) = L F() f(x) f(x)y S |
X 0,"(x) | e b
@t Sl SR
I‘/m e A TES U 3.2

Each of the above functions being even. we consider only [0. 7).
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By Lemma 1, for all large n,

" R 2 Y
f )

<ag'lx = 0 Wl o < e G (3.3)
Lolo,nl/20] ’

On the other hand, for x < n'/?¢, by the definition of lower type,

X Qﬁj_(i) _—1~ o i
'f(x) f(x) '< Ty ¥ T @)
P *(—xn~1i%)
P (xnmt/2e) o P¥(—-xn /%)

< e-—.?:”u)(1~e)x

< =G M} (3.4)
for n such that

P ¥(—xn120) = 0,

Similarly, we show for [0, n'/%],

| f 2 12 2
<(x' 4+ Clgl'll/z"e_clﬂ"l' } e~ Cron'? L e a1t ?

QW) If—(lg ~ ?17) |

(3.5)
On the other hand, for x* = n > ng,
S 1 . 1 P 0:%(x) e Q. *(x) al _J_d_ . _1__
RUNEY ‘f(x) HES) E o s [T e * 5,0
e . ] \ ] 3,71/'20
< (f(,,uzu) s Sn(nl/Zn)) <f(,11/2o)
< e~ Cast' %, (3.6)

As earlier, it is easy to check that 2S,(n'/?*) == f(n'/*), and also that
| @,%(x)] < |x!. Hence (3.1) follows from (3.3)-(3.6).

THEOREM 4. Let f(2) = Yro@* @y >0, ap =0 (k = 1), a, = a4
(k = 1), be a noneven entire function of order p (0 < p < ), type 7, and
lower type w (0 < w < 1 < o0). Then there exists a rational function r¥,(x)
of degree at most 2n for which, for all large n,

! /2
- rz*n(x)hilfm("x-f) < eACM”l‘ s (4])

mol
I3

where r}(x) = r,(x) Q,*(x).
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Proof. By Lemma 3,

I

. AN
foxy
Now write
| i . ), (%)
e Ll e @
A P 2l :f( X ) i
l .
,}( \ \’ AN
As earlier. for 0 X ntie we get
s Y0
faxoyl =t
On the other hand, for x nte
IRy
fexn e
‘pn A,( gAY

if P,*(--xn=12) 7 0. Similarly, for O

; l |
0, %(x) ?f? o "u(»\‘)}

)
On the other hand, for x nte,
Q.7 x) 11 - l',,(,\')i R
' e x ) fUx

since from the construction of r,(x),
FaX) ( 2 azl:»\'%)

By our assumption on the coefficients, we have

R SRR

b

O, ) v

P R v, 1 20y
S RVIRLEE

. 2 L
0t o2 Cypntt Yo Car

+3)

(4.3)

(+4.0)

(4.7)

4%y
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As before, we can show

2% antE = f(nti), (4.9)

in

From (4.7), (4.8), and (4.9), we get for | x | > nl/%,

i , Splite , e
J Q*(.\)l l m - I"n(X)I < -e*;l—lrzlm::) e Caant™7, (4.10)

Equation (4.1) follows from (4.4), (4.5), (4.6), and (4.10).

o =
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